随着人们对电动汽车 (EV) 和混动汽车 (HEV) 的兴趣和市场支持不断增加,汽车制造商为向不断扩大的客户群提供优质产品,竞争日益激烈。由于 EV 的电机需要高千瓦时电源来驱动,传统的 12 V 电池已让位于 400-450 V DC 数量级的电池组,成为 EV 和 HEV 的主流电池电压。
市场已经在推动向更高电压电池的转变。800 V DC 和更大的电池将变得更占优势,因为使用更高的电压意味着系统可以在更低的电流下运行,同时实现相同的功率输出。较低电流的优点是损耗较低,需要管理的热耗散较少,还有利于使用更小的电缆为整个车辆供电。http://www.ic-bom.com/
电池的主要负载是车辆的电机,使用交流电机的 EV 和 HEV 依赖于主驱逆变器将直流电池电源转换为交流电。主驱逆变器是电动汽车的心脏,提供驱动汽车前进所需的扭矩和加速度。主驱逆变器的两个主要设计考虑因素包括转换效率和峰值功率。
从 DC 到 AC 的电源转换效率越高,车辆就可以使用更小的电池做更多的事情。更高的效率还意味着系统可以提供更多的功率,并减少需要管理的散热。
峰值功率决定了车辆的整体性能,特别是车辆的瞬时扭矩和加速能力。效率(续航里程)和峰值功率(性能)共同决定了车辆的应用和使用场景。
如今,许多 EV 和 HEV 都是基于 IGBT 技术构建的。随着碳化硅 (SiC) 技术的问世,更高的效率和性能成为可能。http://www.ic-bom.com/
碳化硅的优势
IGBT 技术通常为中低档车辆提供更具成本效益的解决方案,SiC 提供出色的效率和峰值功率,尤其是在较高电压下,适用于非常重视续航里程和性能的车辆,系统成本也更加灵活。每个芯片阻抗更低,可实现出色的效率和热优化。在这些功能的共同作用下,每英里的电池消耗得以降低。虽然 SiC 的成本高于 IGBT,但在许多应用中,这被 SiC 提高的能效所带来的整车其他方面的成本节省所抵消。
转换效率:
就本质而言,当前的 IGBT 技术会随着电压的增加而变得更厚且效率更低,从而导致需要更高的阻断电压。可以基于 IGBT 构建更高电压的逆变器,但随着电动汽车的电压达到 800 V 及以上,SiC 的效率将大大高于 IGBT。在更高电压下,SiC 不必像 IGBT 一样厚也能实现阻断电压。在标准负载下,IGBT 的效率约为 94%。然而,在较低负载下,其效率下降至 92%,例如当车辆以巡航速度运行时。相比之下,SiC 在标准负载下可达到 98%,增益为 4%。SiC 在较低负载下具有 95% 的效率,增益为 3%。
增加行驶里程:
一个 100 千瓦时的电池和基于 IGBT 的逆变器解决方案,可以产生 300 英里的最大行驶里程。使用 SiC ,效率提高 3% 以上,将使车辆的续航里程增加 9 英里或更多。对于具有更大电池的车辆,例如长途运输卡车,续航里程会更远。http://www.ic-bom.com/
更小直径的布线:
电机可以用较低的电流驱动,因为基于 SiC 的主驱逆变器在较高电压下运行效率更高。这样,就可以使用直径较小的电缆。贯穿车辆的布线的直径变小,减少了整体重量,这样只需更少的电力就能驱动车辆并增加总的行驶里程。此外,更小直径的布线成本更低,抵消了使用高压 SiC 主驱逆变器的成本。
系统尺寸:
SiC 技术的效率更高,使高压主驱逆变器在尺寸上更加紧凑,而不会影响效率或峰值功率。较小的逆变器使设计人员在逆变器的放置方面具有更大的灵活性,并最大限度地增加了车内的乘客空间和可用空间。
热管理:
管理车辆内的热量对于维持整体系统效率至关重要。基于 SiC 的主驱逆变器具有更高的热效率,可产生更低的损耗和更少的散热。这意味着逆变器在较低的温度下运行,带来双重好处:牵引系统可以实现更高的峰值功率,同时降低散热系统整体成本。http://www.ic-bom.com/