SiC这几年的发展速度几乎超出了所有人的意料。最近几年,在各家SiC厂商的努力下,SiC MOSFET器件已经有了大幅的改进,制造方法和缺陷筛查也有了一定的进步。SiC的商用化和上车之路已经明显加速。http://www.ic-bom.com/
在SiC MOSFET的技术路线之争上,一直有平面栅和沟槽栅两种不同的结构类型。所谓的沟槽栅,可以通俗的理解为在平面的基础上“挖坑”(如下图的示意图比较中可以清晰的看出)。国际SiC厂商们正在通过沟槽栅来更大的发挥SiC的潜力,放眼望去,有的厂商挖一个坑,有的挖两个坑,还有的是斜着挖,各种技术结构层出不穷,百花齐放,也颇有看点。
在谈SiC MOSFET之前,让我们先来回顾下硅基MOSFET的发展历程。在70、80年代,用于大功率的硅MOSFET采用的大都是垂直导电路径和平面栅型结构,到90年代硅MOSFET转而开始使用“挖沟槽”来提高效率。现在,在SiC MOSFET中使用沟槽结构由于具有降低导通电阻的效果而备受瞩目。那么,SiC MOSFET是该选择平面栅还是沟槽栅呢?http://www.ic-bom.com/
平面栅结构是行业内应用最早、最广泛、最可靠的架构。平面SiC MOSFET于2011年实现商业化,是由当时Cree推出的CMF20120D,平面栅结构由于具有结构简单、容易制造、可靠性等优点,因此至今仍然占据主导地位。然而,在减小芯片尺寸并因此提高产能的驱动下,其横向拓扑结构限制了它最终可以缩小的程度。
沟槽栅结构是一种改进的技术,指在芯片表面形成的凹槽的侧壁上形成MOSFET栅极的一种结构。沟槽栅的特征电阻比平面栅要小,与平面栅相比,沟槽栅MOSFET消除了JFET区,因此不存在JFET电阻,少一个电阻。转向沟槽栅的目的之一就是为了实现较低的特定导通电阻(Ronsp,电阻 x 面积),这可以允许芯片制造商缩小裸片的尺寸,使用更少的SiC原材料,从而提高产量。
理论上来说,沟槽栅能大大提升器件参数、可靠性及寿命。但是其难点也很显而易见。沟槽MOSFET很难以实现可靠、稳定的运行。沟槽栅的设计必须解决器件顶部SiC的高电场(大于Si的9倍)最大化的问题,同时保护同样位于器件顶部的精密栅极氧化物免受相同电场的影响。这种平衡行为需要巧妙而复杂的器件布局,否则漂移区将需要严重降额,从而侵蚀沟槽架构的增益。因此,沟槽 MOSFET的一个缺点是它们的设计更复杂,通常需要更多的制造步骤,对工艺的复杂度要求较高。而且在可靠性方面也存在一定的风险。http://www.ic-bom.com/
为此,SiC芯片供应商们尤其是国际的大厂都在发挥自家各自的本领,开始了对SiC沟槽MOSFET的探索。
从各厂商的动作来看,SiC MOSFET的器件结构似乎在重走IGBT的路,向沟槽型迈进是SiC MOSFET的必由之路。而国内的SiC MOSFET厂商大多是以平面栅为主。就目下而言,平面型SiC MOSFET仍然是主流,对国产厂商而言也是主要的发展路线。
如Wolfspeed联合创始人John Palmour在德国媒体Elektroniknet发布的一篇采访文章中表示,他认为平面栅SiC MOSFET的技术优势远未耗尽。
SiC MOSFET供应商派恩杰是国内SiC领域上车的先行者之一,此前派恩杰的杰创始人黄兴博士也曾谈到,SiC材料与硅基不同,由于碳化硅有优异的性能可使激光刻蚀无限量缩小pitch,从而达到更好的HDFM效率。因而不需要如硅基芯片一样挖沟槽来缩Pitch。未来几年,平面型MOSFET技术依然是车用碳化硅MOSFET的主流。基于平面栅结构,派恩杰已经发布了650V-1700V各个电压平台的SiC MOSFET,而且已经顺利在新能源龙头企业批量供货,实现“上车”。http://www.ic-bom.com/
至于未来国产SiC厂商何时要“挖沟”目前还不好说。但即使要迈向沟槽栅结构,对国内厂商而言也不是易事,如上文所述,沟槽栅的设计难度极高,而且对制造工艺也有很高的要求。国际大厂往往采用IDM模式,可将制造与自身设计进行不断地试验,国产厂商一般采用的是FablessMOS,要跨入沟槽式想必还有一段时日。
除此之外,沟槽结构的高专利壁垒也是国产厂商要迈过去的坎儿。国际SiC巨头在SiC MOSFET领域布局多年,也积累了不少专利。因此,持有关键专利的老牌SiC厂商有望在市场上获得长期竞争优势。下图是Yole统计的SiC专利持有者的情况。虽然许多公司都在专注于建立垂直整合的供应链以确保其SiC业务的长期发展,但很少有公司在整个SiC价值链上开发出强大的专利组合,国产SiC厂商仍有很大的发展空间。http://www.ic-bom.com/